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FORMATION AND BASIC PARAMETERS OF VORTEX RINGS

UDC 532.5; 532.527D. G. Akhmetov

This paper describes an experimental study of the properties of vortex rings with variation of parame-
ters of the air jet expelled from a round nozzle by a special device. Characteristics of the vortex rings
were determined by hot-wire anemometer measurements of the velocity field at a certain distance
from the nozzle exit where vortex formation is presumably completed. A mathematical model for the
formation of a vortex ring based on conservation laws is proposed, and a comparison of theoretical
results with experimental data is given.

Extensive studies of the formation and motion of vortex rings over more than hundred years have revealed
many regularities in vortex motion of fluids and have provided the basis for recent designs of efficient technological
processes, for example, the method of extinguishing powerful fires in spouting gas-oil wells [1–3]. However, adequate
theories for describing the formation and structure of vortex rings have not yet been developed. A review of papers
devoted to investigation of properties of vortex rings is given in [4]. A complete flow pattern for a real vortex ring
was first obtained in [5], where anemometer measurements of the velocity field were performed to obtain geometrical
and kinematic characteristics of vortex rings, the streamline structure, and vorticity. Practically identical results
were obtained in Sullivan [6]. It is of interest to determine the dependence of characteristics of vortex rings on
the parameters determining the conditions of their formation. From this viewpoint, the studies of Maxworthy [7]
and Tarasov [8] are most informative. However, in these studies, too, emphasis was on estimation of vortex ring
characteristics that are easy to determine experimentally — the radius of a vortex ring and its translational velocity.
The characteristics of vortex rings that determine their structure remain to be studied.

Formulation of Experiments. The present paper reports results of experimental investigation of vortex
rings formed during pulsed discharge of a submerged jet from a cylindrical nozzle with variation in the parameters
determining the formation of a vortex ring. Vortex rings were generated by an experimental setup (Fig. 1a) which
consisted of a receiver 1 with compressed air, bypass valve 2, and expansion chamber 3 with an outlet nozzle 4.
The shaped channel of the nozzle, which consists of an inlet confuser part and an outlet cylindrical part of length l
and outlet radius R0 = 0.0375 m, ensures discharge of the submerged air jet from the chamber with a uniform
velocity profile at the nozzle exit. The external surface of the nozzle is conical with cone angle θ. The expansion
chamber is connected to the receiver 1 with compressed air through a quick-opening electromagnetic valve 2. When
the valve opens, the compressed air passes from the receiver to the chamber and forces the air contained in it to the
nozzle. The large swirls and pulsations of air in the chamber produced by the opening of the valve are damped by
a system of fine-meshed grids. After a certain time τ = 1–1000 msec, the valve closes and the jet from the nozzle is
interrupted. The initial pressure in the receiver was sufficiently large (5 MPa) that it did not change significantly
during the discharge time and ensured constant velocity of discharge through the shaped hole of the valve. This
ensures constant jet velocity V0 from the nozzle. The length and volume of the chamber were sufficiently large that
the jet ejected from the nozzle was formed from the unperturbed air contained in the chamber before the shot and
the gas leaving the receiver was not able to reach the nozzle exit. However, excessive increase in chamber dimensions
le to the occurrence of intense low-frequency oscillations in the nozzle, as in a Helmholtz resonator. Small damping
holes were drilled on the lateral surface of the chamber to restrict the level of pulsations. The experimental setup
ensured identical parameters of the jet and the vortex rings produced by repeated starts. A typical oscillogram of
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Fig. 1

Fig. 2

the hot-wire anemometer signal that characterizes the time variation in jet velocity at the nozzle exit is shown in
Fig. 2.

Determining Parameters. From the description of the experimental setup and its operation principle it
follows that the formation of a vortex ring during pulsed discharge of a submerged jet from a cylindrical circular
nozzle is determined by the following dimensional parameters: the nozzle radius R0, the length of the cylindrical
portion of the nozzle l, the cone angle of the nozzle surface θ, the jet velocity V0, time of jet discharge τ , and
the density and viscosity of the medium ρ and µ, respectively. The current time is not included in the number of
determining parameters because the parameters of the vortex ring are determined at the characteristic time — the
moment of completion of vortex ring formation, when its further motion can be treated as motion in an unbounded
fluid which does not depend on the formation dynamics (this approach to analyzing the motion of turbulent vortex
rings was developed in [9]). According to the theory of dimension, from the parameters listed above, one can compose
four nondimensional combinations that determine the formation of the vortex ring: L∗ = V τ/R0, Re = V R0ρ/µ,
θ, and l/R0.

The experiments were carried out at fixed length of the cylindrical portion of the nozzle l/R0 = 2, the vortex
ring parameters were determined with variation of the three nondimensional quantities L∗, Re, and θ, which specify
the length of the ejected jet, the Reynolds number of the jet, and the cone angle of the external surface of the
nozzle.

To make a similar list of the required parameters of a vortex ring, we can use results of the experimental
studies of the vortex ring structure [5] and conclusions from existing theoretical models of vortex rings. According
to these data, a vortex ring that has formed can be imagined as a closed volume of swirled liquid with a shape close
to an “oblate” ellipsoid of revolution which moves in the surrounding fluid with translational velocity along the
minor axis of the ellipsoid. This closed volume of the vortex ring is called the vortex atmosphere. The motion of
the medium around the atmosphere of the vortex is similar in pattern to the nonseparation potential flow past the
corresponding solid body (see Fig. 1b). Inside the vortex atmosphere, the fluid circulates over closed streamlines
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Fig. 3

that enclose the toroidal vortex core. In the meridional section of the vortex, the vorticity distribution has the shape
of a bell-shaped curve with maximum at the center of the core, with as much as half of the total vorticity (velocity
circulation) concentrated within the core, which, in most cases, occupies only 3–5% of the cross-sectional area of the
vortex. Obviously, the main properties of vortex rings with the structure described above are characterized by the
following parameters shown in Fig. 1b, where R is the radius of the ring vortex (or the radius of the circular axis of
the vortex core), rc is the radius of the core, a and b are the lengths of the semiaxes of the vortex atmosphere, u0 is
the translational velocity of the ring vortex, Γ is the velocity circulation along the closed streamline AOBCA, which
envelopes the vortex atmosphere (in Fig. 1, the vortex streamline are presented in a coordinate system attached
to the vortex), γc is the velocity circulation around the vortex core, v is the volume of the vortex atmosphere,

P =
ρ

2

∫
τ

ω × r dτ is the vortex momentum of the ring [10], which is proportional to the integral of the vector

product of the vorticity ω and the radius-vector r over the fluid volume.
Using the quantities R0, V0, and ρ, we can write the required parameters in nondimensional form: R/R0,

rc/R0, u0/V0, Γ/(V0R0), γc/(V0R0), v/(πR3
0), P/(ρπR3

0V0), a/R0, and b/R0.
Vortex ring parameters were determined from the velocity field measured by hot-wire anemometer probes.

The probes were placed at a distance z = 12R0 from the nozzle exit. The distance was chosen such that in
all experiments the formation of a vortex ring was completed by the moment when the vortex arrived at to the
probes. We used miniature hot-wire probes with a sensor made of a platinum wire of 5 µm diameter and 1 mm
length fastened to a thin holder. Assuming axisymmetric flow in the vortex ring and placing the wire of one probe
perpendicular to the z and r axes in the axial plane of symmetry of the ring and the wire of the second probe
parallel to the z axis, one can obtain the time dependence of the magnitude and direction of the velocity vector in
the vortex ring moving through the probes.

At the moment when vortex formation is completed, the motion of the vortex ring is practically steady-state.
Therefore, it can be assumed that the vortex structure remains unchanged during passage through the measuring
point. Hence, the time dependence of the velocity can be reduced to the dependence of the velocity on the spatial
coordinates (z, r) attached to the vortex using the transformation z = u0t, u = u1−u0, where t is the current time,
u0 is the translational velocity of the vortex ring (in the z direction), and u1 and u are the velocity components along
the z axis in the laboratory coordinate system and the coordinate system attached to the vortex ring, respectively.
Thus, for a fixed position of the probes, it is possible to determine the velocity distributions along the line parallel
to the z axis at r = const. The entire flow pattern was determined by discrete displacement of probes on the radial
axis r and restart of the vortex, and for each position of the probes, measurements were averaged over four starts
of the vortex.

The principle of determining some parameters of the vortex ring is shown in Fig. 3, which gives an exper-
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imental plot of the axial velocity component uz(0, r). The point of intersection of the experimental curve with
the straight line uz = u0 corresponds to the center of the vortex core and determines the vortex radius R. At the
vortex core, uz varies practically linearly. The distance between the extrema at the ends of the linear segment of the
curve uz(r) is equal to the doubled radius of the vortex core 2rc. More precisely, the radius of the core is determined
from the distributions of the radial velocity component ur(z) at r = R0 since the largest and smallest peaks on this
plot are more pronounced. The lengths of the semiaxes of the vortex ring are determined as follows: as the doubled
length of the minor semiaxis 2b, we use the distance between two points of the distribution uz(z, 0), where uz
takes zero values (branching point of the streamline on the z axis). To determine the length of the semiaxis a, we

calculate the distribution of the stream function ψ =
∫
0

ruz dr at z = 0. The distance on the r axis between points

corresponding to zero values of ψ is equal to a. The velocity circulation around the core γc =
∮
u dl = 2πrcuc is

determined from values of the radial velocity uc on the boundary of the core and the radius of the core.
To determine the translational velocity u0, we visualized the vortex ring by smoke and illuminated it by

a narrow slot-hole light when it moved in the zone of the probes. The lighter was made up of five pulsed lamps,
which give five sequential flashes at specified times. Therefore, a frame taken by a photographic camera shows five
sequential positions of the vortex. The translational velocity of the vortex ring was determined from measured times
of flashes and positions of the vortex on the photograph. In describing experimental results, we use the following
nondimensional parameters of the vortex ring (some of them are denoted by asterisk): R∗ = R/R0, ε = rc/R,
u∗0 = u0/V0, Γ∗ = Γ/(V0R0), γ∗c = γc/(V0R0), r∗c = rc/R0, v∗ = v/(πR3

0), P∗ = P/(ρπR3
0V0), and a/b.

Dependence of Vortex Ring Structure on Jet Length. In the present experiments, vortex rings
were produced by discharge of an air jet with fixed velocity V0 = 7.3 m/sec. The radius of the nozzle exit was
R0 = 37.5 mm. The Reynolds number of the jet was constant: Re = 1.825 · 104. The jet length was varied by
changing the time of jet discharge τ . The studies were performed for five values of the jet length: L = V0τ = 70,
142, 286, 420, and 695 mm. Characteristics of the vortex rings formed for these jet parameters are given in Fig. 4
as functions of the nondimensional jet length L∗ = V0τ/R0. From Fig. 4 it follows that the main nondimensional
parameters of the vortex ring increase rapidly with increase in L∗ at L∗ 6 6–8. With further increase in jet length,
the translational velocity u∗0 and ε and γc/Γ practically do not change. Only the radii of the vortex R∗ and the
core r∗c and the velocity circulation Γ∗ continue to increase. In addition, from Fig. 4 it follows that for large values
of v∗, the volume of the vortex atmosphere L∗ depends linearly on the length of the ejected jet.

Vortex Ring Parameters with Variation in Jet Reynolds Number. The effect of the jet Reynolds
number on the vortex ring structure was studied for a constant jet length L = V0τ = 188 mm (L∗ = 5). The
jet Reynolds number was varied by changing the jet velocity V0 with corresponding variation in the throat of the
quick-acting valve. In order that the jet length V0τ remained constant, the time of jet discharge τ was decreased in
accordance with increase in the velocity V0.

Results of flow visualization experiments and results of measurements of vortex ring parameters show follows
that two different types of vortex ring formed depending on the jet Reynolds number. For Re 6 (1–2) · 104, laminar
vortices with a layered spiral structure formed, which did not change during the further motion of the vortex. The
structure of the vortex rings formed for large Re is not layered. The flow in their atmosphere is turbulent. However,
visualization of them by smoke shows a well-cut toroidal vortex core. Both types of vortex ring photographed
soon after the end of their formation are shown in Fig. 5. Because the vortices were illuminated by a thin flat
ray of light, the photographs shows only meridional sections of the vortices. On the right of Fig. 5, the turbulent
vortex is shown from the end. It is interesting that along the toroidal core, smoke is distributed in the form of
periodical spots, and the core consists of seemingly separate cells bounded by the torus surface and meridional
planes. The number of cells in this photograph is 26. Additional studies showed that the cellular smoke structure
exists outside the vortex core, and inside of the core is colored uniformly. A comparison of the pattern obtained
with the other existing patterns of periodic distribution of fine particles in fluids (for example, aggregation of dust
in nodes of standing sound waves in a tube or Taylor vortices between rotational coaxial cylinders) suggests that
for particular Re number, near the core there is a secondary axisymmetric flow. Secondary flows of this type can be
radial fluid flows directed from the core and to the core at neighboring joints of the cells. Apparently, in this case,
the number of cells at the torus should be even. In [7, 11] it is shown that a vortex ring can be unstable against
flexural perturbations of the core.
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Fig. 4

Fig. 5

Results of measurements of vortex ring parameters with variation in Re are given in Fig. 6. From Fig. 6
it follows that the strongest dependence of vortex ring parameters on Re is observed for laminar vortex rings at
Re 6 104. In this case, the swirled vortex core encompasses a considerable area of the meridional section of the
vortex atmosphere, whose shape differs from the spherical shape. Therefore, for small values of Re, the parameter
ε = rc/R was determined as ε ≈

√
sc/(πR2), where sc is the cross-sectional area of the swirled vortex core. It

is established that the transverse semiaxis of the vortex atmosphere a practically does not depend on Re over the
entire range of Re and the longitudinal semiaxis b increases rapidly with decrease in Re. As a result, with decrease
in Re, the ratio of the semiaxes a/b tends to unity, i.e., the vortex atmosphere becomes practically spherical. It
can be assumed that such vortex rings are similar in structure to a spherical Hill vortex [10]. From Fig. 6a it
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Fig. 6

follows that for Re → 0, the radius of the vortex ring R∗ tends to unity. For very small Re numbers, vortex rings
were generated by jet ejection from a 1 cm diameter nozzle by a piston, and the working media were solutions of
glycerin in water with large viscosity. In this case, the jet velocity was determined from the piston velocity. In
Fig. 6 it can be seen that in transition to the turbulent structure, all vortex ring parameters vary smoothly in a soft
mode and not abruptly, as is typical of boundary-layer flows. From Fig. 6 it follows that for Re > (1–2) · 104, the
nondimensional radius of the vortex ring R∗ and the velocity circulation Γ∗ practically does not depend on Re. In
this case, the circulation γ∗c is also nearly constant and has a value of γ∗c ≈ 1.33. The radius of the core r∗c decreases
with increase in Re, and the translational velocity u∗0 at Re > 104 varies insignificantly.

Turbulent vortex rings are characterized by considerable angular velocities of the fluid in the core. The mean
angular velocity in the core ωc can be estimated as the ratio of the peripheral velocity uc on the boundary of the
core to the radius of the core. From the data given in Fig. 6 it follows that for Re = 7.5 · 104, the angular velocity
of fluid rotation in the core reaches 35,000 rev/min. In this case, the translational velocity of the vortex ring is
about 11 m/sec. In special experiments using a shock tunnel, we obtained vortex rings with a translational velocity
of u0 > 100 m/sec (in particular, u0 = 99 m/sec and R = 33 mm for V0 = 198 m/sec and R0 = 25 mm). It can
be assumed that in this case, the angular velocity of the fluid in the core is an order of magnitude higher than the
above-mentioned value. Indeed, according to measurement results, the mean linear velocity uc on the boundary of
the core for high-velocity vortex rings can be estimated as uc ≈ (3–5)u0. Because the geometrical dimensions, and,
hence, rc of the vortex ring produced from the shock tunnel, are smaller than those of the vortex described, the
above estimates show that in this case, the angular velocity in the core can reach 106 rev/min. Of great interest is
the distribution of turbulent velocity pulsations in vortex rings because it can be similar in nature to that obtained
for other concentrated vortex formations in fluids.

Figure 7 shows oscillograms of hot-wire anemometer signals which record the magnitude of the velocity
(upper curve) and the radial velocity component (lower curve) with variation in the z coordinate at r ≈ R0, i.e.,
the velocity was determined along the line that was parallel to the z axis and passed through the vortex core. The
oscillograms were obtained for L∗ = 2.5, Re = 7.5 · 104, u0 = 11 m/sec, and R = 51.4 mm. The minimum values of
the signals at the center of the frame correspond to the position of the probes near the center of the vortex core, and
the maximum values correspond to the position on the boundary of the core. From the oscillograms it follows (with
allowance for the strongly nonlinear dependence of the hot-wire anemometer signal on velocity) that the velocity
pulsations on the core boundary reach a large value comparable to the mean value of the velocity in this region.
With distance from the core boundary, the pulsations decrease. It should be noted that the velocity pulsations
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Fig. 7

Fig. 8

are not stochastic, unlike the pulsations in the boundary layers, and have some quasiperiodicity. Such structure of
the pulsations suggests that they can be caused by deformations (waves) of the core surface, as was observed in
studies [12] of vortex cores in flows of various types. In addition, in [12] it is shown that the cross section of vortex
cores is not round but has the shape of a polygon, with the number of angles of the polygon changing sporadically in
the turbulent regime, and swirled fluid jets are discharged from the angular points of the core into the surrounding
medium. With distance from the core, the jets roll themselves up into spiral “sleeves.” It is probable that passage
of these spiral “sleeves” through the measuring probe determines the nature of the velocity pulsations shown in
Fig. 7.

Effect of Nozzle Cone Angle on Vortex Ring Characteristics. In the experiments, we studied vortex
ring parameters for R0 = 37.5 mm, V0 = 8.1 m/sec, and V0τ = 230 mm (Re = 2.02 · 104 and L∗ = 6.14) and
the cone angles of the nozzle surface (see Fig. 1): θ = 13.13, 39, 65, and 90◦. Sharp-edged nozzles were used in
all experiments, and the generator of the nozzle outer cone surface was 200 mm long. Results of this series of
experiments are shown in Fig. 8, from which it follows that the vortex ring parameters depend weakly on θ. With
increase in θ, the vortex radius R∗ decreases only slightly and the translational velocity u∗0 increases.

Estimation of the Most Important Parameters of Vortex Rings Using Conservation Laws. In
order to elucidate the physical meaning of the detected experimental regularities and obtain analytical estimates
of the main parameters of vortex rings, we consider in more detail the dynamics of formation of a vortex ring.
Figure 9 gives camera records of typical phases of vortex ring formation during discharge of a submerged air jet
from a circular cylindrical tube. In Fig. 9, the flow patterns were visualized by smoke, the jet flows from the tube
from left to right, and the generators of the tubes are denoted by horizontal lines. The asymmetry of the pattern
about the axis of the tube on the first frames is caused by the nonuniform initial distribution of the density of the
smoke supplied to the tube for flow visualization. Spiral rolling-up of the vortex sheet (vortex formation) begins at
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the moment when the front of the jet emerges from the hole (frame 1). As the jet moves, the vortex recedes from
the edge of the hole. The leading edge of the mushroom-like head of the vortex is the boundary of the fluid which
was in the tube prior to the beginning of jet discharge. From results of experiments it follows that during most of
the jet discharge time (except for the initial stage, where t � R0/V0) the velocity of motion of the leading edge
of the jet is equal to V0/2, i.e., half the jet velocity. The jet feeding the vortex retains the cylindrical shape when
leaving the hole, and only at the entrance to the vortex, its cross section decreases (frame No. 2–5). The core of the
vortex ring is formed from the mixing layer of the jet edge, which rolls itself up into a spiral surface at the entrance
to the vortex. The surrounding fluid along the jet edge is also entrained in the vortex. The jet discharge ceases
between frame Nos. 5 and 6. By this time, the trailing edge of the jet coincides with the exit section of the tube.
In what follows, the vortex is filled with the fluid from the jet tail which is between the tube exit and the vortex.
It should be noted that the jet tail rolls itself up into a secondary vortex ring, which moves behind the main vortex
ring for some time and dissipates soon. In the last frame in Fig. 9, the formation of the vortex ring is practically
completed. From the given camera records it follows that practically the entire mass of the ejected jet is entrained
in the volume of the vortex ring, and a rather small amount of the surrounding fluid is entrained in the cortex (dark
coils of the spiral). This explains the linear increase in the volume v∗ of the vortex ring atmosphere with increase
in jet length (see Fig. 4a).

For quantitative estimates of vortex ring parameters with variation in jet length, we use the laws of conser-
vation of the vortex momentum and velocity circulation. Figure 10 shows a flow diagram in which a vortex which
has traveled distance s from the tube exit is fed by a cylindrical jet of radius R0 issuing with velocity V0. Entering
the vortex, the jet is compressed, and its boundary, which is a boundary layer separating from the tube edge, rolls
itself up into a spiral surface inside the vortex and then transforms into a vortex core. The section where the jet
begins to narrow is at distance λ from the tube exit. Thus, at the distance λ, the jet is weakly perturbed, and only
at z > λ, the effect of the velocity field induced by the vortex itself becomes significant. It can be assumed that
the part of the jet to the right of the section z = λ has already entered the vortex. Let us estimate the change of
vortex momentum in the fluid outside the tube due to jet discharge. It is known that the vortex momentum P is

determined by the integral over the fluid volume [10, 13] P =
ρ

2

∫
τ

ω × r dτ , where ρ is the density of the medium,

τ is the fixed volume of integration, which corresponds to the space filled with the fluid outside the tube. The

time variation of vortex momentum is given by the equation
∂P

∂t
=
ρ

2

∫
τ

r× ∂ω

∂t
dτ , which by virtue of the equality

∂ω/∂t = rot (u×ω), where u is the velocity vector, reduces to integrals over the fixed surface Σ bounding the fluid
outside the tube:

∂P

∂t
=
ρ

2

∫∫
Σ

{
n[r · (u× ω)]− (n · r)(u× ω) + nq2 − 2(nu)u

}
dΣ.

Here n is the outer normal to dΣ and q = |u|. In the of estimation of ∂P /∂t, integration near the tube exit is
performed over the outer surface of the tube, where u = ω = 0, and over the tube exit section. In the tube exit
flow, two typical zones are distinguished: the zone of boundary layer flow of thickness δ along the tube wall and the
zone of jet flow itself with u = V 0 and ω = 0. On the inner surface of the boundary layer the velocity is equal to
the jet velocity V 0, and on the outer surface of the tube, which coincides with the inner surface of the tube, u = 0.
Therefore, considering the small thickness of the boundary layer, over the entire cross section of the boundary layer,
on the average, we can set u = (V0/2)k and ω = (V0/δ)e, where k is the unit vector in the z direction and e is the
unit vector directed counterclockwise along the azimuthal coordinate if one looks at the tube exit from outside. In
the integration, it was assumed that δ/R0 � 1 and terms of the order of δ/R0 and higher were rejected as negligibly
small. The calculations show that the vector ∂P /∂t is directed along the z axis and ∂Pz/∂t = ρπR2

0V
2
0 . Hence, the

total change in the fluid vortex momentum of the fluid over the jet discharge time τ is

Pz =

τ∫
0

∂Pz
∂t

dt = ρπR2
0V

2
0 τ.

Obviously, at the time t = τ , Pz is the sum of the momentum P of the vortex ring and the momentum
of the tail of the vortex layer Pλ = ρπR3

0λV0. However, as follows from Fig. 9, the evolution of the vortex ring
continues even after the cessation of jet discharge. The tail of the vortex sheet becomes a small vortex ring, which
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Fig. 10

closes the trailing edge of the jet. This vortex formation with momentum δP is no longer part of the main vortex
ring and dissipates soon. It can be assumed that the quantity δP is proportional to Pλ, i.e., δP = αPλ, where α is
a proportionality factor of the order of unity. Therefore, for the moment of completion of vortex ring formation,
the momentum of the vortex ring can be written as

P = Pz − δP. (1)

It is known that for ε � 1 [10, 14], the momentum P is expressed in terms of the radius R and the
circulation Γ of the vortex ring by the formula P ≈ πρR2Γ. Therefore, from (1) it follows that

πρR2Γ = πρR2
0V

2
0 τ − απρR3

0λV0. (2)

To determine the dependences of R∗ and Γ∗ on L∗ by formula (2), we consider the law of conservation of
circulation. It should be noted that during a short initial period t0 � R0/V0, the jet velocity near the nozzle exit
section cannot be considered constant because at t = 0, the intensity γ of the vortex layer on the nozzle wall can be
written as γ = A/

√
z [15, 16], where z is the distance from the exit edge into the depth of the tubes. At this stage,

the flow near the tube edge is assumed to be self-similar and determined only by the coefficient A. The self-similar
stage of rolling-up of a vortex sheet shedding from a tube was studied in [15, 17], but in estimations of vortex ring
parameters for large times of jet discharge τ � t0, this initial flow stage is not significant. Therefore, it is assumed
that during the entire time of jet discharge from the nozzle, the jet velocity is equal to V0, and the effect of the
self-similar stage of the process can be allowed for by assuming that even by the initial time t = 0, the velocity
circulation in the fluid has value ∆, and the further increase in velocity circulation ΓC over the contour C in the
fluid proceeds at constant velocity V0 of jet discharge. One might expect that for large values of τ , the quantity ∆
is small in comparison with ΓC . It should be noted that during formation of the vortex ring, the single swirled
region in the fluid is the jet boundary surface formed from the boundary layer issuing from the nozzle (see Fig. 10).
Considering this surface thin when estimating ΓC , we draw a cut on it. Then, over the entire space, the flow can be
considered irrotational with unique velocity potential ϕ. To estimate ΓC , we draw an immovable contour C which
envelopes the spiral end of the cut and has ends at points 1 and 2 on different sides of the cut on the hole edge. We
calculate the velocity circulation over this contour with allowance for its initial value ∆:

ΓC = ∆ +
∮
C

u dl = ∆ +
∮
C

∂ϕ

∂l
dl = ∆ + ϕ1 − ϕ2.

The potential difference can be estimated from the Cauchy integral of the equations of motion of an ideal fluid
written for points 1 and 2:

∂ϕ1

∂t
+
V 2

1

2
+
p1

ρ
=
∂ϕ2

∂t
+
V 2

2

2
+
p2

ρ
.

Because at points 1 and 2, the pressure is the same: p1 = p2 (which is indicated, in particular, by the linearity of
the jet edge at the nozzle exit), V1 = 0, V2 = V0,
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ΓC = ∆ + ϕ1 − ϕ2 = ∆ +
1
2

τ∫
0

(V 2
2 − V 2

1 ) dt = ∆ +
V 2

0 τ

2
.

Because τ = L/V0, ΓC = ∆ + V0L/2 is the total circulation in the fluid at the moment of termination of jet
discharge t = τ . At this time, the fluid contains only two vortex formations — the vortex ring with circulation Γ and
the tail of the vortex sheet of length λ with circulation Γλ = λV0 (see Fig. 10). Hence, at t = τ , ΓC = Γ + Γλ. We
can assume that in the vortex ring, the velocity circulation Γ does not change even after cessation of jet discharge,
because at t > τ , a vortex closing the jet is formed from the tail of the vortex sheet. This vortex remains outside
the vortex ring and dissipates (see Fig. 9). Therefore, the velocity circulation of the vortex ring formed can be
written as

Γ = ∆ + V0(L/2− λ). (3)

As was noted above, the rate of propagation of the leading edge of the jet is equal to V0/2. Therefore, the
quantity L/2− λ is the distance between the leading edge of the jet and the jet tail at t = τ . On this interval, the
spirally rolled head of the vortex sheet is located. From Figs. 9 and 10, it is evident that the transverse dimensions
of the spiral formation inside the vortex ring and the segment L/2− λ are comparable in magnitude. Therefore, it
can be assumed that the quantity L/2 − λ is proportional to the doubled radius of the external coil of the spiral
part of the vortex sheet, which is approximately equal to the difference of the radii of the vortex ring and the tube.
This is proved by experimental data, from which it follows that

L/2− λ ≈ 2(R−R0)K, (4)

where K is the proportionality factor.
Writing expressions (2)–(4) obtained from the laws of conservation of the vortex momentum and circulation

and from elementary geometrical considerations, we arrive at the following system of equations for R∗, Γ∗, and
λ∗ = λ/R0 in nondimensional form:

R2
∗Γ∗ = L∗ − αλ∗, Γ∗ = ∆∗ + L∗/2− λ∗, L∗/2− λ∗ = 2K(R∗ − 1).

Here ∆∗ = ∆/R0. These formulas correspond to experimental data in the examined range of L∗ for the following
values of empirical constants: ∆∗ = 0.385, α = 0.91, and K ≈ 2. The system obtained reduces (by elimination of
the quantity λ∗, which is of no interest) to two cubic equations for the radius R∗(L∗) and circulation Γ∗(L∗) of the
vortex ring

R3
∗ − [1−∆∗/(2K)]R2

∗ − αR∗ − [(1− α/2)/(2K)L∗ − α] = 0,
(5)

Γ3
∗ − 2(2K −∆∗)Γ2

∗ + [(2K −∆∗)2 − 4αK2]Γ∗ − 4K2[(1− α/2)L∗ − α∆∗] = 0.

From results of numerical solutions of these equations (dashed curves in Fig. 4b) it follows that the obtained
analytical dependences of R∗ and Γ∗ on L∗ agree with experimental data over the entire range of L∗.

Unfortunately, we were unable to obtain a formula for estimating another important parameter of vortex
rings — translational velocity u0. The translational velocity of a vortex ring with a thin core (ε � 1) is known
to be given by u0 = fΓ/(2πR), where f depends on ε and the distribution law Γ in the vortex core [11, 14].
Such dependence of u0 on Γ and R follows, generally speaking, from considerations of dimensions. Apparently, to
estimate ε and the type of the function f , one needs to solve a more complicated problem of the rolling-up of a
vortex sheet with allowance for the viscosity of the medium. Attempts to estimate u0 using the energy conservation
law and additional assumptions on the distribution of Γ in the vortex ring core (proposed, for example, in [18])
seems to be unjustified because of difficulties in taking into account energy dissipation during breakup of the jet tail.
However, it should be noted that in the range of L∗ considered in the present paper, the values of the function f

are in a narrow interval (1.5–1.2), and this makes it possible to estimate (even if roughly) the translational velocity
of the vortex ring u0 using the values of R∗ and Γ∗ obtained from (5).

The author thanks V. K. Sheremetov for assistance in the experiments and also T. D. Akhmetov and
B. A. Lugovtsov for useful discussions of the work.
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